Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 82

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-057, 98 Pages, 2023/02

JAEA-Review-2022-057.pdf:8.5MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal" conducted in FY2021. The present study aims to construct a database for quantitative prediction of contaminated reinforced concrete inside the reactor building. In FY2021, data on deformation and water movement caused by drying and reabsorption of mortar were obtained to evaluate the mesoscale cracking behavior of concrete. A rigidbody spring model was used to develop a program that can consider changes in concrete age and temperature, water, and stress conditions. To evaluate the long-term penetration behavior of radionuclides into the factual matrix, data on sorption …

JAEA Reports

Fuel debris criticality analysis technology using non-contact measurement method (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-043, 52 Pages, 2023/01

JAEA-Review-2022-043.pdf:3.48MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2021. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology (Tokyo Tech), National Institute of Advanced Industrial Science and Technology (AIST), and National Research Nuclear University (MEPhI) as the first year of four years research project. For the criticality characteristic measurement systems to be developed by the Japanese and Russian sides, …

Journal Articles

A 3D particle-based simulation of heat and mass transfer behavior in the EAGLE ID1 in-pile test

Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji

Annals of Nuclear Energy, 179, p.109389_1 - 109389_10, 2022/12

 Times Cited Count:1 Percentile:31.61(Nuclear Science & Technology)

JAEA Reports

Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2022-027, 85 Pages, 2022/11

JAEA-Review-2022-027.pdf:5.72MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In this study, ETCC, a gamma-ray imaging system, was modified to be a portable device that can be used in 1F decommissioning project and can operate in high-dose environments. ETCC is the world's first gamma-ray camera capable of complete bijective imaging, the same as an optical camera. Therefore, ETCC can make general quantitative image analysis methods applicable to radiation, …

Journal Articles

Simulation of the self-propagating hydrogen-air premixed flame in a closed-vessel by an open-source CFD code

Thwe Thwe, A.; Terada, Atsuhiko; Hino, Ryutaro; Nagaishi, Ryuji; Kadowaki, Satoshi

Journal of Nuclear Science and Technology, 59(5), p.573 - 579, 2022/05

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The simulations of the combustion of self-propagating hydrogen-air premixed flame are performed by an open-source CFD code. The flame propagation behavior, flame radius, temperature and pressure are analyzed by varying the initial laminar flame speed and grid size. When the initial laminar speed increases, the thermal expansion effects become strong which leads the increase of flame radius along with the increase of flame surface area, flame temperature and pressure. A new laminar flame speed model derived previously from the results of experiment is also introduced to the code and the obtained flame radii are compared with those from the experiments. The formation of cellular flame fronts is captured by simulation and the cell separation on the flame surface vividly appears when the gird resolution becomes sufficiently higher. The propagation behavior of cellular flame front and the flame radius obtained from the simulations have the reasonable agreement with the previous experiments.

JAEA Reports

Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2021-047, 127 Pages, 2022/01

JAEA-Review-2021-047.pdf:5.57MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal" conducted in FY2020. The present study aims to construct a database for quantitative prediction of contaminated reinforced concrete inside the reactor building. In FY2020, in chapter 3.1, in order to obtain the data for the evaluation of mesoscale cracking behavior, the equipment for the making and the measurement of the test specimens were prepared, the evaluation method was confirmed, and preliminary experiments were carried out.

JAEA Reports

Improvement of critical safety technology in fuel debris retrieval (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-037, 61 Pages, 2022/01

JAEA-Review-2021-037.pdf:4.24MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of critical safety technology in fuel debris retrieval" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The purpose of research was to improve the criticality safety analysis methods in the case of fuel debris removal with the collaboration with Russian university, which has a lot of experiences in the criticality analysis. This research has been performed as two fiscal years project in FY 2019 and FY 2020 by Tokyo Institute of Technology (Tokyo Tech) and Tokyo City University (TCU) as the Japanese side, and National Research Nuclear University MEPhI as the Russian side.

Journal Articles

A 3D particle-based analysis of molten pool-to-structural wall heat transfer in a simulated fuel subassembly

Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji

Extended abstracts of the 2nd Asian Conference on Thermal Sciences (Internet), 2 Pages, 2021/10

For the Japanese sodium cooled fast reactor, a fuel subassembly with an inner duct structure (FAIDUS) was designed to avoid the re-criticality by preventing the large-scale pool formation. In the present study, using the finite volume particle method, the EAGLE ID1 test which was an in-pile test performed to demonstrate the effectiveness of FAIDUS was numerically simulated and the thermal-hydraulic mechanisms underlying the heat transfer process were analyzed.

Journal Articles

A Prediction method for the dose rate of fuel debris depending on the constituent elements

Terashima, Kenichi; Okumura, Keisuke

Journal of Advanced Simulation in Science and Engineering (Internet), 8(1), p.73 - 86, 2021/03

JAEA Reports

Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2020-044, 79 Pages, 2021/01

JAEA-Review-2020-044.pdf:4.39MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" Conducted in FY2019. In this study, a gamma-ray imaging detector, ETCC, will be improved to operate under high dose conditions, and a portable system will be constructed to be installed in the Fukushima Daiichi Nuclear PowerStation (1F). In addition, the development and combination of ETCC-based quantitative radioactivity distribution analysis methods will lead to innovative advances in the six key issues to be solved for the decommissioning of the 1F. This system will enable us to quantitatively visualize the three-dimensional radiation distribution and its origin.

Journal Articles

Numerical simulation of heat transfer behavior in EAGLE ID1 in-pile test using finite volume particle method

Zhang, T.*; Funakoshi, Kanji*; Liu, X.*; Liu, W.*; Morita, Koji*; Kamiyama, Kenji

Annals of Nuclear Energy, 150, p.107856_1 - 107856_10, 2021/01

 Times Cited Count:5 Percentile:65.59(Nuclear Science & Technology)

Journal Articles

Calculations for ambient dose equivalent rates in nine forests in eastern Japan from $$^{134}$$Cs and $$^{137}$$Cs radioactivity measurements

Malins, A.; Imamura, Naohiro*; Niizato, Tadafumi; Takahashi, Junko*; Kim, M.; Sakuma, Kazuyuki; Shinomiya, Yoshiki*; Miura, Satoru*; Machida, Masahiko

Journal of Environmental Radioactivity, 226, p.106456_1 - 106456_12, 2021/01

 Times Cited Count:6 Percentile:35.21(Environmental Sciences)

JAEA Reports

Improvement of critical safety technology in fuel debris retrieval (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-041, 30 Pages, 2020/12

JAEA-Review-2020-041.pdf:1.9MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of Critical Safety Technology in Fuel Debris Retrieval" conducted in FY2019.

Journal Articles

Development of a robot simulator for decommissioning tasks utilizing remotely operated robots

Suzuki, Kenta; Kawabata, Kuniaki

Journal of Robotics and Mechatronics, 32(6), p.1292 - 1300, 2020/12

Journal Articles

A Model intercomparison of atmospheric $$^{137}$$Cs concentrations from the Fukushima Daiichi Nuclear Power Plant accident, phase III; Simulation with an identical source term and meteorological field at 1-km resolution

Sato, Yosuke*; Sekiyama, Tsuyoshi*; Fang, S.*; Kajino, Mizuo*; Qu$'e$rel, A.*; Qu$'e$lo, D.*; Kondo, Hiroaki*; Terada, Hiroaki; Kadowaki, Masanao; Takigawa, Masayuki*; et al.

Atmospheric Environment; X (Internet), 7, p.100086_1 - 100086_12, 2020/10

The third model intercomparison project for investigating the atmospheric behavior of $$^{137}$$Cs emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident (FDNPP-MIP) was conducted. A finer horizontal grid spacing (1 km) was used than in the previous FDNPP-MIP. Nine of the models used in the previous FDNPP-MIP were also used, and all models used identical source terms and meteorological fields. Our analyses indicated that most of the observed high atmospheric $$^{137}$$Cs concentrations were well simulated, and the good performance of some models improved the performance of the multi-model ensemble. The analyses also confirmed that the use of a finer grid resolution resulted in the meteorological field near FDNPP being better reproduced. The good representation of the wind field resulted in the reasonable simulation of the narrow distribution of high deposition amount to the northwest of FDNPP and the reduction of the overestimation over the area to the south of FDNPP. In contrast, the performance of the models in simulating plumes observed over the Nakadori area, the northern part of Gunma, and the Tokyo metropolitan area was slightly worse.

Journal Articles

Simulation analysis of the Compton-to-peak method for quantifying radiocesium deposition quantities

Malins, A.; Ochi, Kotaro; Machida, Masahiko; Sanada, Yukihisa

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.147 - 154, 2020/10

JAEA Reports

Development of measurement system of radioactive plume using unmanned airplane in the fiscal year 2018 (Contract research)

Sanada, Yukihisa; Ochi, Kotaro; Ishizaki, Azusa

JAEA-Research 2020-006, 60 Pages, 2020/07

JAEA-Research-2020-006.pdf:4.84MB

At the accident of nuclear facilities, a prediction of the behavior of released radioactive plume is indispensable to make a decision on a refuge plan of inhabitants. Currently, prediction system which is based on atmospheric dispersion simulation has been implemented as a tool of the atomic energy disaster prevention. However, the direct measurement method of the radioactive plume has not existed. In this study, some component technologies were developed for the establishment of direct measurement methods of radioactive plume using unmanned aerial vehicle whose technological innovation is remarkable. In addition, the spray test using mock aerosol was conducted to obtaining the deposition rate to the airplane body. The algorism of making a flight plan was developed based on a prediction model of the radioactive plume. This report summarized the outcome of the last year of the three-year plan.

Journal Articles

Gamma detector response simulation inside the pedestal of Fukushima Daiichi Nuclear Power Station

Riyana, E. S.; Okumura, Keisuke; Terashima, Kenichi; Matsumura, Taichi; Sakamoto, Masahiro

Mechanical Engineering Journal (Internet), 7(3), p.19-00543_1 - 19-00543_8, 2020/06

Journal Articles

Predictability of a short-term emergency assessment system of the marine environmental radioactivity

Kawamura, Hideyuki; Kamidaira, Yuki; Kobayashi, Takuya

Journal of Nuclear Science and Technology, 57(4), p.472 - 485, 2020/04

 Times Cited Count:3 Percentile:31.89(Nuclear Science & Technology)

The Japan Atomic Energy Agency developed a Short-Term Emergency Assessment system of the Marine Environmental Radioactivity (STEAMER) to predict the oceanic dispersion of radionuclides in the ocean around Japan. The purpose of this study is to validate the predictability of STEAMER using oceanographic forecast and reanalysis data, which were saved for past several years. Results of oceanic dispersion simulations that are driven by oceanographic reanalysis data are assumed to be true solutions. Oceanic dispersion simulations are conducted for Cs-137 released hypothetically from the Fukushima Daiichi Nuclear Power Plant. The predictability of STEAMER is quantitatively examined for the length of the forecast period. Ensemble forecast simulations are also conducted to successfully improve the predictability of STEAMER.

JAEA Reports

Decontamination simulation and future prediction of air dose rate in difficult to return zone in Fukushima Prefecture

Yamashita, Takuya; Sawada, Noriyoshi*

JAEA-Research 2019-010, 227 Pages, 2020/03

JAEA-Research-2019-010.pdf:21.44MB
JAEA-Research-2019-010(errata).pdf:0.5MB

In order to support the decontamination activities proceeded by the national government and municipalities in terms of technology, we have developed a simulation system "RESET" which predicts the effect of decontamination. We also developed a "two-component model" for the purpose of predicting long-term changes in the air dose rate. We use these tools to perform decontamination simulation and predictive analysis of the air dose rate after decontamination, and provide information to the national government and municipalities aiming for reconstruction. In this report, the verification result of the prediction methods implemented using actual measurement data obtained in the "Decontamination model demonstration project in difficult-to-return zone" and "Survey result on transition of air dose rate after decontamination model demonstration project" conducted by Ministry of the Environment. In addition, the decontamination simulation conducted for the entire difficult-to-return area and the results of future prediction of the air dose rate after decontamination are shown.

82 (Records 1-20 displayed on this page)